
www.quanta.org.uk

CONTENTS

Volume 23 Issue 6
Dec 2006/Jan 2007

CHAIRMAN’S REPORT.......................John Mason....................3
COPY DATE for next issue..3
EDITOR’S APOLOGY............................John Gilpin....................4
QUANTA COMMITTEE PRECIS.........Sarah Gilpin....................4
QL & THE GENEALOGIST (3).............Sarah Gilpin....................5
MASTERMIND.....................................Steve Poole....................7
JOCHEN MERZ SOFTWARE......................ADVERT....................8
PROCedures & FuNctions....................Steve Poole..................10
CONFIG BLOCKS IN TURBO (2).......George Gwilt..................12
QL TODAY...ADVERT..................14
RWAP QL SOFTWARE...............................ADVERT..................20
USING SSSS......................................George Gwilt..................22
QUANTA POSTER.......................................ADVERT..................23
HOVE QUANTA AGM & WORKSHOP......................................26
CLUE to CHRISTMAS CHALLENGE...Steve Poole..................29
MINISQL VERSUS LCD MONITOR...Dilwyn Jones..................30
ROBOTICS on the QL (2).................David Buckley..................32
QBRANCH...ADVERT..................39
T F SERVICES...ADVERT..................40

Information on the Association
Membership of QUANTA, the independent QL user group, is by annual subscription. The
Membership Secretary can supply full details. Copies of the association’s constitution &
annual accounts are available from the Secretary. There is an extensive software library.
There are active national subgroups. Details are given in the Member’s Guide and in this
magazine.

QUANTA Committee - 2006/2007
Chairman John Mason 73 Chewton Common Road, Highcliffe, Christchurch, BH23 5LZ

Email: chairman@quanta.org.uk Tel: 01425 275894

Secretary Sarah Gilpin 181 Urmston Lane, Stretford, Manchester. M32 9EH

Email: secretary@quanta.org.uk Tel: 0161 865 2872

Treasurer , John Gilpin 181 Urmston Lane, Stretford, Manchester. M32 9EH Membership
Secretary
& Missed Issues Email: treasurer@quanta.org.uk Tel: 0161 865 2872

Email: membership@quanta.org.uk

Magazine Editor

Email: editor@quanta.org.uk

Librarian Roy Brereton 94 Teignmouth Road, Clevedon, N. Somerset. BS21 6DR

Email: librarian@quanta.org.uk Tel: 01275 871 917

Helpline

Email: helpline@quanta.org.uk

Back Issues Requests Basil Lee 31 Fairdale Gardens, London. SW15 6JW

Email: backissues@quanta.org.uk Tel: 0208 789 1976

QUANTA reserves the right to publish, reject or edit any material submitted. The
opinions expressed are solely those of the contributors. Member’s private small ads
- free (up to 50 words). Non-members private small ads (and members after 50
words) 50p per 10 words. Block ads; Single issue Full page£10, Half page £5,
Whole Year Full page £50, Half page £25. Terms strictly cash with order. Receipt if
requested. All copyrights and trademarks are hereby acknowledged

Quanta Magazine

Page 3Dec 2006/Jan 2007

COPY DATE for FEBRUARY/MARCH 2007 ISSUE is:
5TH FEBRUARY 2007

Please ensure that your copy reaches the editor on or before that date.
Copy on Paper or Magnetic Media or by Email.

All Contributions are Welcome.
Copy on Microdrive or Floppy Disk or CD to be accompanied by hard

copy printout.

Copy by Email to - editor@quanta.org.uk

CHAIRMAN’S REPORT John Mason

 Sussex QL User Group was the first sub group to offer to hold
the 2007 AGM so the Annual General Meeting will be held at
Portslade Town Hall on Sunday 15 April 2007. I look forward

to seeing all of you there. Our thanks also go to the West Midlands QL User
Group, who offered to host the AGM, but on the last day. We have
suggested that they should apply earlier next year.

 During 2006 we have carried out extensive trials with an electronic
version of the Magazine. These trials have now come to a successful end.
Committee have decided to offer Members the option of receiving their
magazines electronically as an email attachment in place of the present
printed version by post from Volume 24, Issue 1 – Feb/Mar 2007.

 The minimum requirement to receive the magazine electronically is
a computer with the ability to receive email and a 56K modem.

 To subscribe send your email address with the subject “Electronic
Magazine 2007” to Sarah Gilpin at secretary@quanta.org.uk as soon as
possible please.

 Each member who receives their magazine electronically will
reduce the magazine postage bill by £1.38 per year for a UK address, more
for an overseas member, and this will help to contain the operating costs
of Quanta.

Quanta Magazine

Page 4Dec 2006/Jan 2007

EDITOR’S APOLOGY John Gilpin

 I feel that an apology is needed for the lateness of this issue of
QUANTA Magazine. Due to commitments to my family and to my
work for the Scout Association, not to mention my work as

QUANTA Treasurer,my “spare” time during the last quarter of 2006 has
been extremely limited and one of the results of this is the late publication
of this issue. My sincere apologies are sent to all our members and traders
and I trust that you have not been unduly inconvenienced.

 The working committee of QUANTA is currently reduced to three
members and with all the will in the world, it is not possible to provide a
consistent and efficient service to our members and ideally, a further three
members would be welcomed in order to divide the working load between
us. By volunteering to take on extra duties for QUANTA, the present
committee members stress that the extra work will have to take a lower
priority to current commitments and apologises in advance for any delays
which are caused by circumstances beyond their control.

 I understand from our Secretary that nomination forms sent out with
the Oct/Nov 2006 Issue have resulted in only one nomination to stand for
election to the committee and that from a non-member who joined QUANTA
in order to stand. Surely there must be others who can spare a couple of
hours or so per week to share our burden. Although the deadline for
nominations has passed, we have the facility to co-opt members onto the
committee and those interested would be most welcome. If you know of a
member (or yourself) who would be interested in learning more about the
work of the committee, please contact our secretary, Sarah Gilpin, or fill in
and return a nomination form.

QUANTA COMMITTEE PRECIS Sarah Gilpin

 A committee meeting was held at the Byfleet workshop. The
venue and date for the AGM 2007 were discussed. In the
absence of any other offers, the AGM will be held at

Portslade Town Hall, Sussex on 15th April 2007. A dinner will be organised
for Saturday 14th April 2007 if there is enough members interested.

 Progress on the electronic version of the magazine was also
discussed together with the improvement in format and content since the
AGM 2006. It was felt that the trader’s opinions of the suggested change in

Quanta Magazine

Page 5Dec 2006/Jan 2007

THE QL & THE GENEALOGIST(3) Sarah Gilpin
Research

 The increasing interest in family history and the growth in home
computers have driven the transfer of old documents into
computer format and therefore more information is easily

available to the researcher. No longer does all research have to be
undertaken in library or cathedral archive offices, nor does the family
historian have to be able to read old Secretary handwriting. Parish
Registers, Census records, rates records and other civil and ecclesiastical
records are being transcribed by students and researchers.

 One of the oldest and largest data bases generally available
through the Internet is the IGI files generated and held by the Mormon
Family History Centres. This information is also available on microfiche at
local history centres throughout the UK. The downside to the IGI files is that
death is not recorded in the way that baptisms and marriages are. The
earliest IGI information was gleaned by word of mouth from the new
members of the Mormon Church, and this has lead to many variations of
spellings and other inaccuracies. The good researcher will check all the
data and verify the same from alternative or the original sources.

 Information held in the registers of births, deaths and marriages has
always been available from Somerset House (more recently St Catherine’s
House) provided you knew the name and probable year of birth and
duplicate certificates are available at a price. The index for this source is
now available in many libraries and provides a very useful tool, but although
the English/Welsh records are available, in Scotland, the reverse is not true.
The limitation is that Civil Registration did not start until 1837 and was not
compulsory until 1856. More information was added to the records towards
the latter part of the 19th Century, such as the spouse’s surname for a
marriage, and the mother’s maiden name for a birth and the age at death.

 Other important sources are the National Census, Rates Books,
Parish registers, and records from the Armed forces. One difficulty with
many of those records is that they are only available in the locality of origin.
A far greater difficulty arises from inaccuracies in the information given to
the census enumerator and the vagaries of name spelling by the
enumerator due to local accents and dialects. The decision has to be made
as to how much research can you do yourself and how much are you willing
to pay others to do.

Quanta Magazine

Page 6Dec 2006/Jan 2007

 Military records are available in some libraries, and on the Internet.
So are lists of emigrants to the USA and lists of criminals to Australia. What
is not always available are the names of those who died during the voyage.

 For the absolute beginner the place to start is the civil registers and
family members. Start with recording the names of your parents and
grandparents and their siblings. Include, where known, their dates of birth,
marriage and death with places. Armed with this information start to use the
Civil registers. All registrations should be made within six weeks of the
event; the registrations are listed in quarters Jan – March, April – June etc.
Therefore a child born around Christmas may not be registered until
January and the record will therefore be in a different year and quarter than
expected. The entry in the civil register gives Surname, Forenames (or
Initials), Registration District, Volume Number and Registration Number –
from which any individual record may be obtained from St Catherine’s House.

 Another excellent source is parish registers, but where these have
been transcribed by such organisations as the Mormons errors occur. The
most common error comes from the parish register dates as the church year
started April 1st and ran to March 31st. Therefore in the early registers the
months Jan to March are often recorded by researchers in the wrong year
(One before the actual year). There are two other problems arising from the
registers themselves, the first is that until the late 17th early 18th century only
the father’s name was recorded, and the second one is the common
practice of naming younger children after deceased older children. There
was also a convention used in the naming of children in many parts of
England and Scotland (eldest son named after paternal grandfather, 2nd son
after maternal grandfather and 3rd son after father, similarly for girls), so that
a number of children in each generation were frequently called by the same
name. Although these children may well have been called within the family
by shortening or nicknames, the registers only give the original name.
Example – Richard Good has 4 sons, say William, Walter, Richard and
John; if each of these sons married and had at least one son there would
be 4 Richard Goods, their children would show in the baptismal records as
name, son of Richard Good, (which Richard, when they all live in the same
parish?)

 Once the 1881 census became available on disc, whether through
the local history centre, at the library or bought for use at home, it became
easier to find locations of your ancestors as both place of birth and place of
census registration are given. It was at this stage that we realised that we

Quanta Magazine

Page 7Dec 2006/Jan 2007

were gathering information from a number of different sources, but had no
cross reference to the source of any single piece of information.
 Dilwyn Jones has produced an excellent list of sources 1 for family
history research. There are also many research organisations on the
Internet, such as Genes Reunited, Roots and many more. There are also
sites available for a single surname or for a place name, e.g. Stonehaven.
Some sites are free for browsing, but charge for printed data while others
have a registration fee before information can be accessed. Many towns,
counties and regions have their own historical society which researches and
records local information, but many have a joining fee. Many of these have
publications and CDs at a reasonable price for their area.

 One such organisation told all new members that for earlier family
accuracy there should be a six point reference for any individual. The
parents and both sets of grandparents of an individual make up the six point
reference and is particularly helpful for the 17th and 18th centuries, where the
naming of children was so often duplicated.

 Armed with this research information, and source material the family
historian is ready to record and cross reference the same.

 The final article in this series will describe the methods that we
initially used for recording our information some 10 years ago and the
refinements we have made as we became more proficient and made use of
the Internet sources. We have spent time in Somerset, Gloucestershire,
Berkshire, Oxfordshire and Aberdeenshire conducting research; some to
verify existing information and some to find out new information. All these
sources need to be recorded on the family database.

Notes: 1 Some years ago, Dilwyn Jones provided me with a floppy disc
containing a number of sources which I found very useful. The same disc
contained a Viewer programme which enabled me to select the individual

MASTERMIND Steve Poole

 One of the all-time favourite computer-games was the
famous 'Mastermind'. Perhaps one of the most surprising
aspects of the game was that it needed such little code to

simulate. Most of the code in the listing is as usual for initialisation and
input error-trapping. (To avoid copyright restrictions the game does not
conform strictly to the commercial version).

Quanta Magazine

Page 8Dec 2006/Jan 2007

Quanta Magazine

Page 9Dec 2006/Jan 2007

 Typically, just one REPeat loop containing two nested FOR-loops
can do just about anything...

 To play, just RUN and follow the instructions. Two pins and two
colours are easy, but nine pins and nine colours are diabolical! For
example, nine numbers have factorial 9! combinations, being 362880
possible answers! (The colours are simply represented by numbers to
simplify the coding).

 Remember, to play you must INPUT your try as consecutive
figures in the range 1 to 9 (or whatever the number of figures you have
selected). The number of pins is initially indicated by the number of
full-stops...

 If you don't know how to play, just ask an older friend who will
certainly be able to explain!

 My thanks go to Bruno Coativy who beta-tested this program and
found a nasty bug, which I have eliminated by using mask-strings to
avoid counting pins twice. This bug occurred because I had forgotten to
test the code with fixed value-limits...Aiee!...haste and over-
confidence...

 Happy mind-mastering!

100 ::
110 REMark Mastermind_bas. by S.Poole, v20dec2006
120 REMark Beta-Test & Optimisation by B.Coativy
130 REMark for Quanta
140 :
150 OPEN#1,con_8: WINDOW 256,206,256,0
160 PAPER 2: INK 7: CLS: ct=1
170 AT 0,1: CLS 3: INPUT'Difficulty? (2 to 9)'!d$
180 IF d$ INSTR 'Qq': STOP
190 IF d$ INSTR '23456789': n=d$: ELSE GO TO 170
200 r$='': FOR f=1 TO n: r$=r$&RND(1 TO n)
210 AT 0,1: CLS 3: PRINT 'no.','try','good','mis-placed'
220 a$='123456789': a$=a$(1 TO n)
230 AT 1,7: PRINT FILL$('.',n)
240 :
250 REPeat loop
260 PRINT TO 1;ct; TO 7;: INPUT;t$; : good=0: miss=0
270 IF t$ INSTR 'Qq': STOP

Quanta Magazine

Page 10Dec 2006/Jan 2007

280 IF LEN(t$)<>n: PRINT! 'Oops!': NEXT loop
290 :
300 FOR i=1 TO n
310 IF NOT(t$(i) INSTR a$): PRINT! 'Oops!': NEXT loop
320 END FOR i
330 :
340 IF t$=r$: PRINT! 'Bravo!': EXIT loop
350 b$=r$
360 REMark 1st pass: see if correct
370 FOR f=1 TO n
380 IF r$(f)=t$(f) THEN
390 good=good+1: b$(f)="@": t$(f)='*'
400 END IF
410 END FOR f
420 :
430 REMark 2nd pass: see if mis-placed
440 FOR f=1 TO n
450 p=t$(f) INSTR b$
460 IF p: miss=miss+1: b$(p)='@'
470 END FOR f
480 :
490 PRINT TO 18!good; TO 25!miss: ct=ct+1
500 END REPeat loop: i$=INKEY$(#1,500): RUN
510 ::

End of listing

PROCedures & FuNctions Steve Poole

 Have you ever wondered why the FuNctions CHR$, DATE$,
DAY$, FILL$, INKEY$, SDATE$ or VER$ end with a dollar-
sign? Or why (x DIV y), (x MOD y) or (INT(x)) aren't written (x

DIV% y), (x MOD% y), or (INT%(x)). Don't look for the answer in the
Beginner's Guide or Jan Jones's SuperBASIC Handbook : no mention is
made of them. To find the answer, I have gleaned snippets of information
from various listings, and have managed to put the various pieces together,
so here are my findings:

 There are three sorts of SuperBASIC FuNctions : float, integer and
string. Usually most listings only use one type : float. We shall see why later.
But first a description of SuperBASIC routines : float, Integer & String-type
routines are identified by their names. Float has no suffix, Integer has a '%'
suffix and string has a '$' suffix. Float routines must RETurn a floating-point
expression, Integer routines must RETurn an Integer% expression, and
String routines must RETurn a string$ expression. (But this is perhaps not

Quanta Magazine

Page 11Dec 2006/Jan 2007

the case under SMSQ/E). That seems simple enough and is illustrated by
the routines on lines 150 and 190.

 So why are these constructions not described for us Joe Bloggs
programmers? The TURBO Manual uses the three different routine types,
and even gives clues such as the BASIC_TYPE% keyword, which de-
scribes what it does but not how it does it! (The routines appear to be written
in machine code...)

 The answer seems to be that the writers of the SuperBASIC Lan-
guage did not have enough time to describe things fully by the time that the
QL was launched. And the QL by default supposedly converts everything to
float-type anyway! Now for the results I found:

 SuperBASIC is a very flexible language, but it did not make full use of
such advantages as integer FOR-loops% or String SELect$. We had to wait
for TURBO to get these. When Basic routines were defined, flexibility went
haywire : look at the routine on Line 280 : what a confusing mess! To make
any sense of it, look at line 130 : the actual calling parameters of the FLOAT
routine are all of string type. And here is the rub : the type of the routine’s
Formal parameters is determined by the type of the actual calling parame-
ters, not by any suffixes they might have. This means that the variables on
line 290 are all of string type, even though they appear to be float, integer
and string! I said it was a mess....so just read that last paragraph again!
 The lesson is, of course, to give formal parameters the type you
expect them to receive! Don't use all the flexibility (unless you are prototyp-
ing), and use suffixes to make the function of Procedures, functions, param-
eters and variables clear. Coercion on the QL is very much complicated by
all the many permutations that calls and assignments can adopt.

 Maybe I will write another article on the thorny problem of LOCal
parameters, (not LOCal variables), and the LOCal nature of names, (not
values)! And perhaps another on the curious use of brackets under
basic...and unexpected calling orders...The list of SuperBASIC Routine
Quirks is a long one.

Best Wishes,

Steve Poole.

I already have an article on brackets (parentheses) from Steve and this
will appear in a later issue [Ed]

Quanta Magazine

Page 12Dec 2006/Jan 2007

CONFIG BLOCKS IN TURBO(2) George Gwilt

 T he following article is reproduced by kind permission of the
author and The Scottish QL Users Group (SQLUG) in whose
July & August Newsletter it was first published. It is the

concluding part of the article printed in QUANTA Magazine Volume 23 Issue
4 page 22 and was held over from Issue 5 due to shortage of space. [Ed.]

New code added for Codegen_task v4.07
 This allows an "extension" with first parameter 1 to be used to insert an _INS file.
First the markers "$£#*" (for the INS position) and "((TZ>>" are found.
If these are there, the INS file name from the correct "extension" is loaded to RAM. If this
is a correct file the contents are placed at the INS position.

* D5 is a state marker. We look for A "$£#*" and B "((TZ>>".
* State -1 = only B found

100 ::
110 REMark PROC_FN_bas
120 CLEAR: OPEN#1,con_32: WINDOW 256,206,256,0: CLS
130 PRINT integer%(PI),string$(1),float('abc','d','e','f')
140 :
150 DEFine FuNction integer%(float)
160 int%=INT(float): RETurn int%
170 END DEFine
180 :
190 DEFine FuNction string$(float)
200 s=float
210 SELect ON s
220 =0: RETurn '0'
230 =1: RETurn '+1'
240 =REMAINDER : RETurn '-1'
250 END SELect
260 END DEFine
270 :
280 DEFine FuNction float(var,num,num%,num$)
290 num=var(1): num%=var(2): num$=var(3)
300 Lg=LEN(num&num%&num$) : RETurn Lg
310 END DEFine
320 ::

End of Listing.

Quanta Magazine

Page 13Dec 2006/Jan 2007

* 0 = neither found
* 1 = only A found
* D3 = -1
* D4 = "TZ>>"
* D6 = "#*$£"
* D7 = "(("
 movea.l obj_chan,a0 ID of the file of object code
 moveq #0,d1 -> start of file
 moveq #fs_posab,d0
 trap #3
 moveq #0,d5 mark state 0
 move.l #"TZ>>",d4
 move.l #"#*$£",d6
 move.w #"((",d7
 moveq #-1,d3
 subq.l #4,sp make a space for a long word
lk bsr get_wd set a word to stack
 tst.b d5
 beq lk_1 state 0
 bmi lk_3 state -1
; state 1
;Operations for state 1
;Now looking for "B"
 cmp.w (sp),d7 Could it be "B"? . .
 bne lk . . no, try again
 bsr get_lwd set a long word to stack
 cmp.l (sp),d4 Is it really "B"? . .
 bne lk . . no, try again
 bsr do_pos find B's current position . .
 move.l d1,4(a1) . . and store it
 bra lk_end Finished!
; Operations for state 0
; Looking for both "A" and "B"
lk_1 cmp.w (sp),d6 could it be "A"? . .
 beq lk_1a . . yes
 cmp.w 2(sp),d7 could it be "B"? . .
 beq lk_1b . . yes
 bra lk not found so try again
; First word of A just found
lk_1a bsr get_wd
 swap d6
 cmp.w (sp),d6
 beq lk_1c "A" found

Quanta Magazine

Page 14Dec 2006/Jan 2007

Quanta Magazine

Page 15Dec 2006/Jan 2007

 swap d6 restore D6 for another day
 bra lk
; A now found
lk_1c moveq #1,d5 set to state 1
 bsr do_pos find A's position . .
 move.l d1,(a1) . . and store it
 bra lk go back to find "B"
; Could be B
lk_1b bsr get_lwd get the next long word
 cmp.l (sp),d4 is it the rest of "B"? . .
 bne lk . . no. Try again
 moveq #-1,d5 set to state -1
 bsr do_pos find B's position . .
 move.l d1,4(a1) . . and store it
 bra lk Go back to search for "A"
; Operations for state -1
; Now searching for "A"
lk_3 cmp.w (sp),d6 Could it be A? . .
 bne lk . . no, try again
 swap d6
 bsr get_wd Get next word
 cmp.w (sp),d6 Does it complete A? . .
 beq lk_3a . . Yes
 swap d6 Restore D6 and . .
 bra lk . . try again
; Subroutines and error routines
; DO_POS1 advances D1.L - 6 bytes and sets A1 -> zeroes
do_pos1 subq.l #6,d1
 bra do_pos2
; DO_POS sets the current position to D1.L and sets A1 -> zeroes
do_pos moveq #0,d1
do_pos2 moveq #fs_posre,d0
 trap #3
 lea zeroes,a1
 rts
; GET_SIX, GET_WD and GET_LWD set 6, 2 and 4 bytes from the file to
the stack
get_six moveq #6,d2
 bra get_wd1
get_wd moveq #2,d2
 bra get_wd1
get_lwd moveq #4,d2
get_wd1 lea 4(sp),a1 Skip the return address

Quanta Magazine

Page 16Dec 2006/Jan 2007

get_wd4 moveq #io_fstrg,d0
 trap #3
 tst.l d0
 bne get_wd2
 rts
; Error entries
d_ins_error addq.l #6,sp Tidy stack
d_ins_error1
 lea ins_mess,a0 Send INS error . .
 bsr error
 bra fatal2 . . message
; Probably EOF (shouldn't happen)
get_wd2 addq.l #4,sp
 subq.w #6,d2 was it later? . .
 beq d_ins_error1 ----> . . yes
 bra lk_end defer error message
; "A" found
lk_3a bsr do_pos
 move.l d1,(a1)
;
lk_end addq.l #4,sp Tidy stack
* now the position of the INS marker is at zeroes and of the extension
* marker at zeroes+4.
* We search the extension area for the name of the INS file, check it
* and load it into the INS place.
*
* In each case the file position is set just after the marker.
* To find the correct extension we read in 6 bytes. The first four
* give the relative position of the next file, or -1 to signal the end.
* The next word is 1 for the required extension.
* When the extension is found, the name of the INS file is two bytes from
* the end of the "1".
 subq.l #6,sp space for info from file
 lea zeroes,a1
 tst.l (a1)
 beq d_ins_error ----> no INS to do
 move.l 4(a1),d1 pointer to EXTENSION info
 beq d_ins_error ---->
 moveq #fs_posab,d0
 trap #3
d_ins1 bsr get_six get 6 bytes
 move.l (sp),d1 to next file
 ble d_ins_error ---->

Quanta Magazine

Page 17Dec 2006/Jan 2007

 cmpi.w #1,4(sp) _INS name? . .
 beq d_ins_found . . yes
 bsr do_pos1 go forward D1.L - 6 bytes
 bra d_ins1

d_ins_found bsr get_lwd get length of INS filename .
 move.w 2(sp),d2 . to D2.W
 addq.l #6,sp reset stack
 lea zeroes+92,a1
 move.w d2,(a1)+ set length for OPEN
 bsr get_wd4 get filename to zeroes+90
*
* Now compare names (without regard to case)
* We put the name in INS place to zeroes + 82.
* We put (truncated to 10 bytes) the name from the filename
* to zeroes + 142, with the count in zeroes + 140.
* This count is also put in zeroes + 80.
*
* The comparison is by UT_CSTR
*
 move.l zeroes,d1 position of name in INS . .
 addq.l #2,d1 . . set
 moveq #fs_posab,d0
 trap #3
 moveq #10,d2 10 bytes needed
 lea zeroes+82,a1
 bsr get_wd4 get name from INS place
 moveq #"_",d4
 lea zeroes+90,a2
 adda.w zeroes+92,a2 -> end - 4
 move.l a2,d5 keep place in D5.L
 move.l d5,d2
 lea zeroes+95,a0
 sub.l a0,d2
d_ins2 cmp.b -(a2),d4
 dbeq d2,d_ins2 look for "_"
 bne d_ins_error1 ---->
 addq.l #1,a2
 sub.l a2,d5 length
 cmpi.l #10,d5
 ble d_ins5
 moveq #10,d5 restrict length to 10
d_ins5 lea zeroes+140,a0 place for restricted name

Quanta Magazine

Page 18Dec 2006/Jan 2007

 move.w d5,(a0)+ first the length . .
 lea zeroes+80,a1
 move.w d5,(a1) . . also to the INS name
 bra d_ins6
d_ins3 move.b (a2)+,(a0)+
d_ins6 dbf d5,d_ins3
 lea zeroes+140,a0 reset A0
 suba.l a6,a0
 suba.l a6,a1
 moveq #1,d0 comparison (any case)
 movea.w ut_cstr,a2
 jsr (a2)
 tst.l d0
 bne d_ins_error1 ---->
d_ins4
 lea zeroes+92,a0 point to filename
 moveq #1,d3 open_in
 moveq #io_open,d0
 moveq #-1,d1 myself
 trap #2
 lea zeroes+16,a1 for header
 move.l a0,-4(a1) keep ID of INS file
 moveq #-1,d3 timeout
 moveq #64,d2 size of buffer
 moveq #fs_headr,d0
 trap #3
 move.l zeroes+16,d1 length of file
 moveq #-1,d2 myself
 moveq #mt_alchp,d0
 trap #1
 tst.l d0
 bne d_ins_error1 ---->
 lea zeroes+8,a1
 move.l a0,(a1) keep ALCHP'd address
 movea.l a0,a1
 move.l zeroes+16,d2 length of file
 moveq #-1,d3 timeout
 movea.l zeroes+12,a0 ID
 moveq #fs_load,d0

CONFIG BLOCKS IN TURBO (CONCLUDED)

ERRATA In the previous articles £ should be £

Quanta Magazine

Page 19Dec 2006/Jan 2007

 trap #3
 moveq #io_close,d0 å
 trap #2 close INS file
 movea.l obj_chan,a0
 moveq #-10,d1 to wind back 10 bytes
 moveq #fs_posre,d0
 trap #3
 move.l zeroes+16,d2
 moveq #-1,d3
 movea.l zeroes+8,a1
 moveq #io_sstrg,d0
 trap #3
 movea.l zeroes+8,a0
 moveq #mt_rechp,d0
 trap #1
**
* End of code for _INS files *
**

Operating System Calls

Trap #1 calls

mt_alchp Reserves space and returns its address
 Entry Exit
 D1.L is the size needed A0 is the address
 D2.L is set to -1 for "this job"

mt_rechp Returns space to the heap
 Entry Exit
 A0 is the address

Trap #2 calls

io_open Opens a file and returns its ID
 Entry Exit
 D1.L is set to -1 for "this job" A0 contains the channel ID
 D3.L is set to 1 for "open_in"
 A0 points to the file name

io_close Closes a channel

Quanta Magazine

Page 20Dec 2006/Jan 2007

Quanta Magazine

Page 21Dec 2006/Jan 2007

 Entry Exit
 A0 is the channel ID

Trap #3 calls

In all these calls A0 must contain the channel ID on entry and D3.W
contains the timeout. In the above code timeout is always -1 (forever).

io_fstrg Fetches a number of bytes to a buffer from a
 channel
 Entry Exit
 D2.W is the number of bytes D1.W is the number
 fetched
 A1 points to the buffer's start A1 points to the end

io_sstrg Sends a number of bytes from a buffer to a
 channel
 Entry Exit
 D2.W is the number of bytes D1.W is the number sent
 A1 points to the buffer's start A1 points to the end

fs_posab Sets the position in a file
 Entry Exit
 D1.L is the requested position D1.L is the new position

fs_posre Sets the relative position in a file
 Entry Exit
 D1.L is the offset required D1.L is the new position

fs_headr Reads the file header to a buffer
 Entry Exit
 D2.W is the buffer length D1.W is the number read
 A1 points to the buffer's start A1 points to the end

fs_load Loads a file into a buffer
 Entry Exit
 D2.L length of file
 A1 points to the buffer's start A1 points to the end

Vector

ut_cstr Compares two strings

Quanta Magazine

Page 22Dec 2006/Jan 2007

 Entry Exit
 D0.B is the comparison type D0.L = 0 if strings same
 (A0,A6.L) -> 1st string
 (A1,A6.L) -> 2nd string

Comparison types are from 0 to 3. Type 1 compares strings without re-
gard to case.

USING SSSS George Gwilt

 SSSS is the SMSQE sampled sound system provided on the Q40,
the Q60 and QPC2. I would guess that not many people have
made much, if any, use of this facility. After all, if anyone wants to

incorporate a sound in their program they probably use BEEP, which certainly
can produce a wide variety of interesting noises and which works on all QL
types unlike this curious SSSS.

 First of all I should explain what a sampled sound system is. Briefly
it is a method of converting sounds between analogue and digital form. Sound
picked up by a microphone will appear as a voltage varying with time. This is
captured at discrete intervals of time and converted to a number by a piece of
hardware called an analogue to digital converter (ADC) and recorded. Later this
set of numbers can be reconverted to analogue form by a piece of hardware
called a digital to analogue converter (DAC). There are no ADCs on a Q40 or
Q60 but there are two DACs, one for the left speaker and one for the right. You
might now see that the "sampled" part of SSSS refers to the fact that the sound
is sampled at intervals. The frequency of sampling obviously has an effect on
the fidelity of the digital representation. Higher frequencies mean better record-
ings but larger files of numbers. The frequency used by SMSQE is 20k Herz
which is considered sufficient for most purposes.

 With the Q40/60 come programs, all based on SSSS, by Claus
Graf, Simon Goodwin and Jonathan Hudson, which will play sound. What I want
to do here is to show how anyone can use this sound system directly without
needing, for example, Simon Goodwin's SSSS device driver. I must say that I
am doing this partly out of perversity since it is suggested in the one and a half
page description of the SSSS that "in principal this [program] will be a sound
device". What I will show is rather simpler.

 It is clear that SSSS will only play files which already exist; it will
not help you to produce these. In later articles I hope to suggest how this may
be done. For the moment I am concerned only with the process of using SSSS
to play existing files.

Quanta Magazine

Page 23Dec 2006/Jan 2007

Quanta Magazine

Page 24Dec 2006/Jan 2007

 I must now explain what SSSS allows you to do. SSSS maintains
a queue of byte pairs which, when the sound is on, are sent successively to the
left and right DACs. Each pair of bytes in the queue is called a sample.

 There are five entries into the system to control operations.

Operation Entry

1. To add one sample to the queue. JSR $04(A2)
2. To add multiple samples to the queue. JSR $08(A2)
3. To notify SSSS that multiple samples have
 been added. JSR $0C(A2)
4. To stop the sound. JSR $10(A2)
5. To enquire how many samples remain in
 the queue. JSR $14(A2)

 What I have done is to write a small assembler program which can
be CALLed by S*BASIC instructions to use SSSS. There are three entries to
the program.

 The first performs operations 2 and 3 above. For this the program
takes as parameters an address of an area in RAM containing a set of bytes
which will be treated as mono sound. That is, each byte will be sent both as left
and as right. The second parameter is the number of bytes. SSSS has a
$32000 byte buffer to hold the sound bytes. To load multiple samples operation
2 is called. This sets the start and finish of the available space in this buffer.
When the program has sent a batch of bytes to this buffer, it notifies SSSS by
operation 3. This tells SSSS to "play" these bytes.
 The second entry has no parameters and just stops the sound.

 The third entry has no parameters either, but it returns the number
of samples remaining in the queue.

 Here is the program, followed by some comments:

; CALL asad,a,k adds multiple samples
; (a is the address of a k-byte area of sound pairs)
;
; CALL asad+2 stops the sound
; CALL asad+4 sets the number of samples left to asad+6
;
;
; The macro SETVEC is used for START2 and START3

SETVEC MACRO ENTRY

Quanta Magazine

Page 25Dec 2006/Jan 2007

 MOVEA.L $70,A3 Level 4 auto vector
 MOVEA.L -(A3),A2 set the required vector to A2
 CMPI.L #"SSSS",-(A3) Is it the sound system?
 BNE BAD_EXIT ---->
 TRAP #0 to supervisor mode
 JSR \1(A2) do the job
 MOVE #0,SR back to user mode
 ENDM

 NOLIST
 IN WIN1_SYS_EQUBAS_ASM
 LIST
 BRA START1 send samples
 BRA START2 kill sound
 BRA START3 returns number of samples left . .
ANS DS.L 1 . . in ANS

START1 MOVEA.L D1,A5 address to A5
;
 MOVEA.L $70,A3
 MOVEA.L -(A3),A2
 CMPI.L #"SSSS",-(A3)
 BNE BAD_EXIT ---->
 MOVEQ #0,D5 mark "not finished yet"
 MOVEA.L A2,A4 keep vector
 TRAP #0
 JSR 8(A2) prepare for multiple entry
 MOVE.L D2,D4 set k to D4
 MOVEA.L A5,A0 start of space
 BRA L1
L3 SWAP D4 switch to low word (65535)
L MOVE.B (A0),(A1)+ same byte . .
 MOVE.B (A0)+,(A1)+ . . to left and right
L1 CMPA.L A2,A1 Is buffer full? . .
 BGE L2 . . yes (before time maybe)
L4 DBF D4,L count k pairs (low word)
 SWAP D4 prepare to count high word . .
 DBF D4,L3 . . count high word
 MOVEQ #1,D5 mark "finished"
L2 MOVEA.L A4,A2
 JSR $C(A2) tell SSSS that samples were added
 MOVE #0,SR back to user mode
 TST.L D5 finished? . .
 BNE EXIT1 . . yes
 BSR SUS wait 5 ticks . .

Quanta Magazine

Page 26Dec 2006/Jan 2007

Quanta Magazine

Page 27Dec 2006/Jan 2007

 MOVEA.L A4,A2 . . replace vector pointer . .
 TRAP #0 . . to supervisor mode . .
 JSR 8(A2) . . get new queue pointers . .
 BRA L4 . . and try to finish this time.
EXIT1 MOVEQ #0,D0
 EXIT RTS
BAD_EXIT MOVEQ #-15,D0
 BRA EXIT
;
START2 SETVEC $10
 BRA EXIT1

START3 SETVEC $14
 LEA ANS,A0
 MOVE.L D0,(A0)
 BRA EXIT1

SREG REG D0-1/D3/A0
SUS MOVEM.L SREG,-(A7)
 MOVEQ #-1,D1 this job
 MOVEQ #5,D3 wait 5 ticks
 SUBA.L A1,A1 notify no-one
 MOVEQ #MT_SUSJB,D0
 TRAP #1 wait
 MOVEM.L (A7)+,SREG
 RTS

The file which is included in the program follows:

; EQUBAS_ASM on WIN1_SYS_
; 7 AUG 92
;
BV_BFBAS EQU 0
BV_BFP EQU 4
BV_TKBAS EQU 8
BV_TKP EQU $C
BV_NTBAS EQU $18
BV_NTP EQU $1C
BV_NLBAS EQU $20
BV_NLP EQU $24
BV_VVBAS EQU $28
BV_VVP EQU $2C
BV_CHBAS EQU $30
BV_CHP EQU $34
BV_RTBAS EQU $38

Quanta Magazine

Page 28Dec 2006/Jan 2007

BV_RTP EQU $3C
BV_LNBAS EQU $40
BV_LNP EQU $44
BV_BTP EQU $48
BV_BTBAS EQU $4C
BV_TGP EQU $50
BV_TGBAS EQU $54
BV_RIP EQU $58
BV_RIBAS EQU $5C
BV_SSP EQU $60
BV_SSBAS EQU $64

 Comments on the Program:

 1. The sound system subroutines are found by examining an
address, a, stored in the level 4 auto interrupt which is at RAM address $70.
The long word at a-8 is "SSSS" and the long word at a-4 is the address used
for the entries to SSSS.

 The program sets the address a in A3, the address in a-4 to A2 and
checks that the contents of a-8 are indeed the bytes "SSSS".

 2. All accesses to SSSS must be in supervisor mode, which is
achieved by TRAP #0. Return to user mode is brought about by MOVE #0,SR.

 3. Since the number of byte pairs to be sent to SSSS may exceed
2^16 - 1 (65535) it is necessary to modify the usual method of counting. This is
done here by counting the low word in D4. We drop through the DBF when
D4.W becomes -1. At this stage we swap the words of D4 and count the high
word with a second DBF. If the high word of D4 was not zero we jump to L3
where the words of D4 are again swapped, leaving D4.W equal to 65535.

 4. The entry JSR $08(A2) to SSSS sets the start address of the
availble buffer area to A1 and the end of this area to A2. We thus have to check
after each byte pair has been sent to the buffer whether there is room for more.
If there is not room SSSS is notified that multiple bytes have been sent so that
it can play these and free the buffer for more bytes later. At this stage we wait
five ticks and return to L4 to send a further batch of sound bytes.

 5. The program can easily be adapted to play stereo sound by
altering the line at L to:

L MOVE.B (A0)+,(A1)+

Quanta Magazine

Page 29Dec 2006/Jan 2007

This means of course that the size of the area of sound pairs must be doubled
for the same time length of sound.

 6. This program can be tested using any set of bytes. You can
even use RAM from 0 upwards! The sound you get will be probably be no more
than rasping. It will certainly not be Beethoven's Ninth Symphony.

CLUE TO THE XMAS CHALLENGE Steve Poole

 We know that it’s not 28th February yet but just in case you are
struggling with the QUANTA Christmas Challenge (Volume 23
Issue 5 Page 9) Steve has sent you all a clue:

 Using the formulae x = v COS a*t
 and y = v SIN a - ½ gt^2
as given last month, here is a trajectory demonstrator programme which could
be adapted:

10 ::
20 input ‘velocity & angle’! v,a
40 a=rad(a)
50 g=9.81
60 tmax=2*SIN(a)/g
65 CLS : SCALE v * tmax,0,0
70 for t=0 to tmax step .1
80 x=v*COS (a)*t
90 y=v*SIN(a)*t-.5*g*t*t
100 POINT x,y
110 end for t
120 ::

End of listing.

 Start with v = 75 and a = 50 for the INPUT values at line 20 and
experiment from there.

 Remember that the closing date for entries is midnight on February
28th 2007. All entries to Sarah Gilpin, QUANTA Secretary. (see inside front
cover for address etc.)

Quanta Magazine

Page 30Dec 2006/Jan 2007

MINISQL VERSUS LCD MONITOR Dilwyn Jones

 I recently became the proud owner of a Relisys TL565 LCD 15
inch monitor, courtesy of my (she claims) long-suffering wife.
This monitor has an optimum resolution of 1024 x 768 pixels and

was intended for use with my PC and QPC2, where it worked first time with
no problems.

 It has small stereo speakers built in with plenty of volume, although
rather tinny in quality compared to most computer speakers. Picture quality
is great, text is much sharper and easier on the eye than my old CRT
monitor (less eye strain!) and of course takes much less space than the old
CRT monitor. It's black and silver (there is a light grey or all black version
available too). Above all, it cost less than 100 pounds from eBay.

 I wondered if it could be used with my Minis-QL, which is based on
an Aurora motherboard, with a Super Gold Card, SuperHermes Lite,
MPlane and Qubide.

 Well, the sound part was easy. A simple 3.5mm jack lead connected
the Aurora's sound output to the monitor. The volume control allowed the
beeps and keyboard clicks to be as loud as I needed.

 Pictures weren't quite so easy. So here's my tale of how I got the
Aurora to work with an LCD monitor, to save anyone else going through the
same trauma.:

 Problem 1: LCD monitors have one optimum display resolution.
Anything else is scaled and looks poor or awful.

 Problem 2: Most 15 inch LCD monitors are 1024x768 resolution,
which the Aurora should be able to display in mode 4 (it doesn't have
enough video memory to display 256 colours in 1024x768).

 Problem 3: Most attempts to display anything other than 1024x768
ended with part of the Aurora display off-screen, rather like putting a QL in
monitor windows mode with a TV set.

 Problem 1 basically meant that the monitor preferred a 1024x768
display. This is 4:3 aspect ratio. Attempts to display 800x600 or 640x350
gave what can only be referred to as awful, unreadable pictures which either
didn't fit the screen or were scaled in such a way that parts of letters went

Quanta Magazine

Page 31Dec 2006/Jan 2007

missing - imagine trying to read text where the vertical lines were missing in
most letters. Resolutions which worked best were those which were multi-
ples of 256 pixels across and 128 pixels down in a 4:3 aspect ratio. This
meant that 512x384, 640x480 and 768x576 gave reasonable results, but
512x256, 640x320, 640x350 and even 800x600 gave very poor results.

 Problem 2 was unexpected. At first, I couldn't get the Aurora into
1024x768 pixel mode. DISP_SIZE 1024,768 actually resulted in a
1024x576 display (confirmed with PRINT SCR_XLIM,SCR_YLIM). Ah well,
if all else fails, read the manual, and find out that there's a set of three
jumper links listed in Appendix A of the manual. These are near the centre
of the motherboard, referred to as System Configuration Jumper Block in
the manual. By default, these are set to the SVGA monitor, interlace
disabled. This mode limits the display resolution to 1024x576 maximum.
The logical step seemed to be to change this to Interlace Enabled setting,
which only resulted in a blank screen. So I tried the Multisynch Monitor
setting and this worked. I got a mode 4 1024x768 screen, but ran into
problem 3.
+-----+ FIGURE 1 - Aurora System Configuration
|o o o| Jumper Block. The part that we are
+-----+------+---+---+---+---+ interested in is the set of three links on the
|o o o|o o o| o | o | o | o | right of the picture. To set Multisynch mode,
+-----+------+ | | | | join the rightmost pins with a jumper link and
|o o o|o o o| o | o | o | o | leave the two pairs of pins to the left of those
+-----+------+---+---+---+---+ unconnected.
 System Configuration
 Jumper Block
 <--------->

 Problem 3 was a strange one and the hardest to resolve. No matter
what screen resolution the Aurora was set to, the monitor tried to auto adjust
and parts of the display fell off screen. There seemed to be no logic to it -
sometimes the display would be normal, sometimes not. I eventually real-
ised that the auto-adjust seemed to set the visible display to the largest
non-black section. If I set the Aurora to 640 x 480 only about 512 pixels
across was shown. If I set a border around the entire screen, or set a
background colour which wasn't black, then hit Auto Adjust on the monitor,
normality was restored. So from this I concluded that Auto Adjust works by
sensing non-black areas of the picture. So the easiest way around this is to
set a white border around the entire screen.

Quanta Magazine

Page 32Dec 2006/Jan 2007

 WINDOW #0,SCR_XLIM,SCR_YLIM,0,0 : BORDER #0,1,255 then
hit Auto Adjust via the monitor's front panel buttons if it didn't set itself
automatically.

 Once the Aurora is set correctly, it's then just a matter of fooling the
monitor into auto-adjusting correctly. Once you get it working, the 1024 x
768 Aurora display is fantastically clear on the monitor. And the MinisQL
case is the right size to sit under the monitor, and the monitor is light enough
to sit on the MinisQL case, so it all makes for a rather nice and compact
system.

ROBOTICS ON THE QL (Part 2) David Buckley

 Last month I introduced my Zero2 Turtle and my QL program to
control it. So how do we control a Turtle, in effect a robot
vehicle? Well Zero2 was conceived in the days when embed-

ed microcontrollers were not so easy to use as nowadys so Zero2 doesn't
use one. The controlling computer (a QL, or any other PC with a serial port,
eg a Spectrum) sends bytes at 4800 baud which are received by Zero2 with
an onboard 6402 UART, the parallel output of which is routed through some
inverters, latches and darlington drivers to control the stepper motor for
each wheel and the stepper motor for the pen, as well as the lights and horn.

Quanta Magazine

Page 33Dec 2006/Jan 2007

Figure 1

 Figure 1 shows the main components of Zero2 and shows the items
mentioned above.
 Zero 2 is very easy to program, the serial port (either RS232 or
RS423) must be to 4800 baud one stop bit and no parity.
 Every function of Zero2 can be controlled and monitored by the
computer. To communicate directly, it must be told which device is to be
involved, and what that device is to do. Each device has a numeric address,
to which the control data is sent. Valid addresses are from 0 to 7, though
not all addresses have anything there.
 Address Effector device Sensor device
 0 Drive motors Line/Edge detectors
 1 Pen motor Left bumper
 2 Indicators Right bumper
 3 Speech
 4 Speech/Sound
 5 Sound

Quanta Magazine

Page 34Dec 2006/Jan 2007

 Once you have identified the address of the device you wish to
control, you need to send this number together with the data to the robot.
This is sent as one value, The address is in the high nibble and the data in
the low nibble, ie multiplying the address by 16 and add the data.

 Data values can be between 0 and 15. For example, to send a data
value of 5 to the indicators:

 Address = 2 x 6 = 32
 Data = 5+
 Value sent to port = 37

 The data to be sent varies for each device, as can be seen by a
quick look at the next section. This is because each of the controls in the
robot is connected to one of four electronic switches, each of which can be
on or off. The data you send decides which switches are on and which are
off. The following table shows which switches are on for each of the data
values (1 means on, 0 means off):

 Data Switch Data Switch
 3210 3210
 0 0000 8 1000
 1 0001 9 1001
 2 0010 10 1010
 3 0011 11 1011
 4 0100 12 1100
 5 0101 13 1101
 6 0110 14 1110
 7 0111 15 1111
 i.e. simple binary encoding.
 Each motor is controlled by two switches, switches 2 and 3 for the
left motor, switches 0 and 1 for the right motor. To make each motor move
forwards you need to send instructions in the order 01,00,10,11. By check-
ing the above table, you can see that to move the right motor only, you can
send the data as 1,0,2,3. To drive the left motor only, you send 4,0,8,12. To
drive both motors forward send 5,0,10,15. To drive the motors backwards
send the data in the reverse order. To turn the motors in opposite directions
send 6,0,9,15 or 9,0,6,15. This is a lot of numbers, but on closer examina-
tion thay are all obtained from the original 1,0,2,3 and 4,0,8,12 by adding
the value for the step position of one motor to that for the other. You start at
one end for one direction, and the opposite end for the other.

Quanta Magazine

Page 35Dec 2006/Jan 2007

 1 0 2 3 (3) 2 0 1 3
+ 4 0 8 12 (12) 4 0 8 12

 5 0 10 15 6 0 9 15

 Each time you send a data code to address 0, one or both motors
will move one step. If the data is out of sequence the motors will not operate
properly and will probably just judder. Each step moves the wheel by
0.5mm.

 Alternatively to move 4 steps at a time, then by always ending on 15
the codes will remain in sequence. I.e.
 forward - 5, 0,10, 15,
 backward - 0, 0, 5, 15,
 right - 6, 0, 9, 15,
 left - 9, 0, 6, 15.

 The pen is controlled by the same kind of motor as the wheels, and
the same codes are used to control it, except that only switches 0 and 1 are
involved. One step of the motor is 1/48 of a complete turn. Normally you will
want to move the pen motor half way round each time which is 24 steps, so
you would send the full sequence of steps six times. Remember that the pen
is at address 1, ie the high nibble of the data=1. The position of the pen
should be initialised to 'up' by sending individual steps until the pen is 'up',
then the software and the pen will be synchronised. There is no need to
send the codes to reverse the motor. 24 forward steps from 'up' will lower
the pen to 'down' and another 24 forward steps will raise it to 'up' again.
The LEDs and horn are connected to the switches at address 2 as follows;

 Green LED Switch 0
 Red LED Switch 1
 Low Horn Switch 2
 High Horn Switch 3

 To switch on the red LED, for instance, you need to send the 'on'
code for switch 1. Unfortunately, if you send just that, you will switch off the
other LED and horn if they were on. Every time you send a value to an
address it replaces the previous value. You must keep a note of what was
previously sent to the address and make allowances when sending fresh
data. Assume the low horn and green LED are already on, and you want to
turn on the red LED. The last data sent to address 2 was 5 (0101 - see

Quanta Magazine

Page 36Dec 2006/Jan 2007

table). The code for red LED on is 2 (0010), Add these numbers to get 7
(0111) which will give you the new data. Add on the address x 16, send it to
the robot and on comes the red LED. Now, suppose you want to switch off
the green LED. The code for green LED on is 1. Subtract this from the last
data value of 7 to get the new data.
 Each time a value is sent to a robot address. Zero 2 will send back
a code relating to any sensors connected to that address. Address 0 can
have up to six switches connected to it but the other addresses can only
have up to four each.
 Only address 0 has sensors connected, these being the three line
follower sensors, connected to switches 0 to 2 (switch 3 is always off).
 Whenever either drive motor is stepped, the line follower sensors
will send back a value from 0 to 7 which can be used to allow Zero 2 to
follow a line. A value of 0 means that all the sensors see a dark surface,
while 7 means they all see a bright one.
 Most BASICs of the time were fairly slow when dealing with the real
world, so rapid response were never a problem when programming Zero 2
directly from BASIC. When running the Zero2 Basic Control-program under
QPC2 under XP some strange things seem to happen with the Serial port
and its buffer and Zero2 runs slow and judders. Quitting and rerunning the
program clears the problem as does quitting and restarting QPC2. This
never happened on a QL. A very simple program to drive the robot forward
100 steps is given below, assuming you have already set the baud rate:

 100 zchan=3 :REMark for serial port to robot seri1
 110 baud_rate=4800
 120 OPEN #zchan,seri:BAUD baud_rate
 130 DIM mtrcmnd(4)
 140 mtrcmnd(1) =5: mtrcmnd(2) =0: mtrcmnd(3) =10: mtrcmnd(4) =15
 150 FOR dist=1 TO 100/2 :REMark because 4 steps are 2mm
 160 FOR step=1 T0 4
 170 PRINT #zchan, CHR$(mtrcmnd(step));
 180 NEXT step
 190 NEXT dist
 200 END

 Note the ';' at the end of the print statement to prevent a LF being
sent. LF=10 which will upset the sequence of codes sent to the motors.

Quanta Magazine

Page 37Dec 2006/Jan 2007

 When writing to Zero 2 each device, or device group, has an
address which forms the first three bits of the upper nibble. These are
allocated as follows.

Address Device Data bit allocation
 0 Drive Motors D3 D2 D1 D0
 left right
 (port) (starboard)
 motor motor

 1 Pen D3 D2 D1 D0
 for future Pen lift
 allocation motor

 2 Indicators D3 D2 D1 D0
 Horn Horn Left Right
 High Low LED LED
 Tone Tone

 3-7 for future use for future allocation

In a small Stepper motor the control sequence codes are normally:

 Binary Decimal
 0101 5
 1001 9
 1010 10
 0110 6
 0101 5

In Zero2 this is generated from two data lines with two inverters

 * * I*I* (I=inverted signals)
 1 1 3 0101 5
 0 1 1 1001 9
 0 0 0 giving 1010 10
 1 0 2 0110 6
 1 1 3 0101 5
Each full motor step results in the robot travelling 0.5mm

 [Once again space has run out and we will have to postpone the
conclusion of this article until the next issue Ed]

Quanta Magazine

Page 38Dec 2006/Jan 2007

 [There are no changes to any of the Sub Groups - Please see Issue
5 for Sub Group details Ed]

 [Due to the lateness of this Issue, the QUANTA News feature has
been omitted. Anything which can still be classified as NEWS will be
included next Issue Ed]

Quanta Magazine

Page 39Dec 2006/Jan 2007

Quanta Magazine

Page 40Dec 2006/Jan 2007

